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Abstract

This paper extends an existing single-degree-of-freedom (dof) energy-dissipation scheme to identify damping parameters

for multiple-dof vibration systems. The method balances the energy input of the real system against the energy dissipated

in a theoretical model to develop the identification algorithms. The theoretical friction model is assumed to consist of the

viscous and Coulomb damping components. The proposed algorithms are applicable in the general- and periodic-input

cases. According to the numerical studies performed on periodic excitation, the mixed-frequency harmonic input is

preferable to the single-frequency one. Moreover, when noise is present in the measurements, increasing the length of

integration interval can be a remedy for effects of noise on estimation accuracy. Observations made on numerical study

also indicate that estimation results obtained from a band-limited white-noise input are more accurate than those obtained

from the periodic one. Such excitations are adopted in the experimental study in which an electrical system is investigated.

The experimental results further confirm the validity and reliability of the proposed method.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Friction parameter estimation is based on the analysis of measured input and output responses. Our interest
is in identifying parameters of basic friction models by making use of vibration properties. For single-dof case,
free vibration decrements have been exploited long ago for systems with linear stiffness elements and ‘‘small’’
damping. Free vibration decrements are not applicable if the damping is strong enough to preempt sufficient
oscillations. As such, a scheme for extracting Coulomb and viscous friction parameters from forced
oscillations based on the analytical solutions of Den Hartog [1] and Hundal [2] for the non-sticking response
to harmonic excitations was formulated in Ref. [3]. The limitations of this analytical forced-resonance method
are that it is not applicable for damping which is not ‘‘small,’’ it relies on analytical solutions of single-dof
linear systems, and it does not treat friction models other than Coulomb plus viscous (see for example,
Refs. [4–9]).

Thus, an energy balance was proposed as an alternative to identifying friction parameters by using
analytical solutions [10]. The energy-dissipation method proposed in Ref. [10] balances the energy input as
registered in the force–displacement relationship of the real system against the energy lost of a damping model,
with unknown parameters, to develop the identification algorithms. Numerical and experimental
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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investigations performed in Ref. [10] have shown the reliability and effectiveness of the method. In contrast
with Ref. [10], which focused on the single-dof systems, the current study extends the energy-dissipation idea
to cope with the multiple dof problems.

Many identification techniques require measured input and output. The energy-dissipation method
proposed here falls in that class. Hence, the method can only work in cases where both input and output
are measurable. Among the existing techniques, a direct method was proposed by Mohammad et al. [11],
where physical parameters, i.e. mass, stiffness and damping, of linear and nonlinear structures can be
estimated using measured time data and the least-squares criterion. The method is simple and reliable
provided the system is excited in the range where there are modal frequencies. Chen and Tomlinson [12]
proposed estimating damping parameters in nonlinear oscillators by utilizing the acceleration, velocity and
displacement output and formulating the output in terms of series of frequency response functions. On
the other hand, a wavelet-based approach for identifying parameters from nonlinear systems has been
proposed by Ghanem and Romeo [13]. The method relies on a wavelet-based discretization of the nonlinear
differential equation of motion where orthogonal Daubechies scaling functions are used to track fast
variations of the state of the dynamical system. The method might be sensitive to noisy data because responses
were projected onto orthogonal space in order to find the wavelet-Galerkin solution of the differential
equation. By using orthogonal expansion, details of signal are zoomed so that proper representations of the
signal can be formed in terms of expansion coefficients. As such, high-frequency noise might distort expansion
coefficients, which in turn could lead to incorrect estimates. The energy-dissipation method is more robust
when random noise problem is facing, because such noise can be filtered out through the application of
numerical integration.

Unlike the orthogonal expansion methods, the energy-dissipation approach projects the differential
equation of motion onto energy spaces. The equations of motion are integrated over time to balance input,
kinetic, elastic and dissipated energy involved in the multi-dof vibration system. System parameters are
extracted from these energy-balance equations. In addition, different from the direct method proposed by
Mohammad et al. in which matrices of large dimensions are involved while singular value decomposition
method together with a significance test are required to determine the best set of parameters, our method
works in a simpler way because only numerical integrations of system states are necessary to form the
identification equations. Similar to the method proposed by Mohammad et al. the energy-dissipation method
is not excitation-dependent considering that both periodic and non-periodic excitations can be applied in the
approach. It even works for the input-free situations provided the initial conditions are large enough to obtain
sufficiently rich responses. When the characteristics of the system are of concern, the energy-dissipation
method can be applied to identify nonlinear stiffness or friction model other than Coulomb and viscous, such
as the quadratic damping law.
2. Theoretical basis

The energy-dissipation method involves the balance between the energy dissipated by the friction force of a
real system against the energy input to the system. This balance results in the ‘‘equivalent viscous and
Coulomb friction’’ parameters. The concept is similar to the traditional ‘‘equivalent viscous damping’’ concept
seen in undergraduate textbook such as Ref. [14]. To explain the idea, consider a single-dof damped-forced
oscillator with the following equation of motion:

m €xþ kxþ F ðx; _xÞ ¼ aðtÞ, (1)

where m is the mass, k represents the stiffness, x is the displacement, dots indicate derivatives with respect to
time, and a(t) represents the excitation. In addition, F ðx; _xÞ denotes the damping force occurring at the contact
interfaces. The energy-dissipation method requires the damping model, used for describing the behaviors of
F ðx; _xÞ, to have a form of aF1ðx; _xÞ where a represents the damping coefficient. Although such a requirement
imparts limitation on the proposed method, many existing damping models still fall in that category. These
include two of the most common friction sources, namely the Coulomb and viscous damping. Other nonlinear
damping model satisfying such requirement includes the quadratic damping law.
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Multiplying Eq. (1) by dx and integrating the resultant equation along the motion path C yields the
following equation: Z

C

fm €xþ kxþ F ðx; _xÞgdx ¼

Z
C

aðtÞdx.

To assist the implementation of integration, the integration variable can be changed to time. HenceZ tþT1

T

fm €xþ kxþ F ðx; _xÞg _xdt ¼

Z tþT1

t

aðtÞ _xdt,

where T1 denotes a finite time interval. Now, if the following expressions are defined

W d ¼

Z tþT1

t

F ðx; _xÞ _xdt; W a ¼

Z tþT1

t

aðtÞ _xdt; W e ¼

Z tþT1

t

fm €xþ kxg _xdt.

Eq. (1) becomes

W d ¼W a �W e. (2)

Eq. (2) implies a balance among the dissipated, applied energy and the sum of kinetic and elastic energy. To
implement the damping identification, we assume that x(t) (and its derivatives) and a(t) can be measured.
Then, the terms involved in Eq. (2) are quantified while F ðx; _xÞ is expressed using an assumed friction model
with unknown parameters. By integrating and balancing Eq. (2), one acquires identification equations for the
equivalent damping parameters.

When a(t) and x(t) are periodic, one can integrate Eq. (2) over a full cycle of periodic motion. In that case,
the contribution of the conservative components of the oscillator m €xþ kx is zero, so that the following
energy-dissipation equation can be obtained:

W d ¼

Z tþT

t

F ðx; _xÞ _xdt ¼

Z tþT

t

aðtÞ _xdt ¼W a, (3)

where T represents the fundamental period of the input and response. To further illustrate the idea, F ðx; _xÞ can
be modeled by ‘‘viscous plus Coulomb friction’’ while a harmonic base excitation is adopted for a(t).
Therefore, aðtÞ ¼ kY o cos ot, and

W d ¼

Z tþT

t

fc� _xþ F�ksgnð _xÞg _xdt ¼

Z tþT

t

fkY 0 cos otg _xdt ¼W a, (4)

where c* and Fk* are the equivalent damping parameters to be identified. Here, the Coulomb and viscous
damping are chosen out of many other possible candidates. These two damping models may be elementary;
but they are also too frequently observed in the real modeling situations (see for instance, Refs. [4–6]) to be
ignored. For other more complicated damping models satisfying the form required for the method, i.e.
aF1ðx; _xÞ, adjustments can be made to the proposed identification algorithms according to the principles
presented. In other words, different nonlinear functions can be adopted to derive proper identification
equations.

Eq. (4) can be used to estimate c* and Fk* using two excitation levels. Alternatively, more excitation levels
can be applied to gain multiple versions of Eq. (4). In the latter case, the number of equations is more than the
number of unknown parameters, thus, the least-squares criterion can be applied to improve the robustness
of the method. The algorithms outlined above are suitable for estimating parameters from the single-dof
vibration system.

The basic concepts and procedures used in the single-dof case can be extended to handle multiple dof
problems. To show how the extension can be accomplished, the following equation of motion of a multi-
dof system is considered:

M €xþ kxþ c _xþDð _xÞFk ¼ aðtÞ,

whereMARn� n represents the diagonal mass matrix, n is the number of degrees of freedom, kARn� n indicates
the symmetric stiffness matrix, cARn� n is the viscous-damping matrix, and a(t)ARn is the input vector.
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Moreover, FkARn represents a ‘‘vector’’ consisting of Coulomb elements Fki
such that Dð _xÞFk models the

Coulomb damping occurring at certain locations of the discrete model of the system. To that end, Dð _xÞ 2 Rn�n

is a matrix comprising of sign functions of relative velocities occurring at contact interfaces. Since, in general,
not every damping components appearing in c and Fk are unknown quantities, Eq. (4) can be reorganized as

M €xþ kxþ Eðx; _xÞ þ Bð _xÞc� þGð _xÞF�k ¼ aðtÞ (5)

in which Eðx; _xÞ 2 Rn denotes the vector comprising all the ‘‘known’’ damping components multiplied by their
associated state functions. On the other hand, c� ¼ ½c�1; c

�
2; . . . ; c

�
Q�

T and F�k ¼ ½F
�
k1
;F�k2

; . . . ;F�kS
�T are vectors

which contain the ‘‘un-identified’’ viscous and Coulomb-friction parameters. Bð _xÞ 2 Rn�Q and Gð _xÞ 2 Rn�S

denote state-function matrices, which when multiplied separately by c* and F�k, can be used to model the
viscous and Coulomb damping of the system. In addition, S, Qpn represent the number of the unknown
Coulomb and viscous components.

To formulate the damping-estimation algorithms, a(t) and x(t) are both assumed to be periodic with a
common fundamental period, T. Follow the procedures applied in the single-dof system, Eq. (5) is pre-
multiplied with _xTi ; where _xi ¼ ½0 . . . _xi . . . 0�

T
n�1, the resultant equation is then integrated over a full cycle of

periodic motion. This yieldsZ tþT

t

_xTi M €xdtþ

Z tþT

t

_xTi kxdtþ

Z tþT

t

_xTi Eðx; _xÞdtþ

Z tþT

t

_xTi Bð _xÞc
� dt

þ

Z tþT

t

_xTi Gð _xÞF
�
k dt ¼

Z tþT

t

_xTi aðtÞdt. ð6Þ

Since M is a diagonal matrix and _xi possesses only one non-zero element, the following equation can be
obtained: Z tþT

t

_ximi €xi dtþ

Z tþT

t

Xn

j¼1

kijxj

 !
_xi dtþ

Z tþT

t

eiðx; _xÞ _xi dtþ

Z tþT

t

XQ

j¼1

bijð _xÞc
�
j

 !
_xi dt

þ

Z tþT

t

XS

j¼1

gijð _xÞF
�
kj

 !
_xi dt ¼

Z tþT

t

aiðtÞ _xi dt, ð7Þ

where mi represents the ‘‘ith’’ diagonal element of M. fkij ; j ¼ 1; . . . ; ng; fbij ; j ¼ 1; . . . ;Qg and fgij ; j ¼ 1; . . . ;Sg
individually denote the ‘‘ith’’ row vector of matrices k, B, and G, whereas ai and ei are the ‘‘ith’’ element of
vectors a(t) and Eðx; _xÞ.

Since the integration of conservative components over a cycle of periodic motion are zeros, one hasR tþT

t
_ximi €xi dt ¼ 0 and

R tþT

t
kiixi _xi dt ¼ 0. Eq. (7) can then be recast intoZ tþT

t

XQ

j¼1

bijð _xÞc
�
j

 !
_xi dtþ

Z tþT

t

XS

j¼1

gijð _xÞF
�
kj

 !
_xi dt

¼

Z tþT

t

aiðtÞ _xi dt�

Z tþT

t

Xn

j¼1
jai

kijxj

0
B@

1
CA _xi dt�

Z tþT

t

ei _xi dt

or equivalently,

c�1

Z tþT

t

bi1 _xi dtþ c�2

Z tþT

t

bi2 _xi dtþ � � � þ c�Q

Z tþT

t

biQ _xi dtþ F�k1

Z tþT

t

gi1 _xi dt

þ F�k2

Z tþT

t

gi2 _xi dtþ � � � þ F�kS

Z tþT

t

giS _xi dt

¼

Z tþT

t

aiðtÞ _xi dt�

Z tþT

t

Xn

j¼1
jai

kijxj

0
B@

1
CA _xi dt�

Z tþT

t

ei _xi dt. ð8Þ
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The procedures described above can be repeated for every single-dof of the system. Thus, n equations
similar to Eq. (8) are resulted which can be expressed as the followings:

c�1ti1 þ c�2ti2 þ � � � þ c�QtiQ þ F�k1
gi1 þ F�k2

gi2 � � � þ F�kS
giS ¼ bi; i ¼ 1; 2; . . . ; n, (9)

where

tij ¼

Z tþT

t

bijð _xÞ _xi dt; i ¼ 1; 2; . . . ; n; j ¼ 1; 2; . . . ;Q, (10)

gij ¼

Z tþT

t

gijð _xÞ _xi dt; i ¼ 1; 2; . . . ; n; j ¼ 1; 2; . . . ;S, (11)

bi ¼

Z tþT

t

aiðtÞ _xi dt�

Z tþT

t

Xn

j¼1
jai

kijxj

0
B@

1
CA _xi dt�

Z tþT

t

eið _xÞ _xi dt; i ¼ 1; 2; . . . ; n. (12)

It is worth to emphasize that Eq. (9) is the crux of the identification algorithms. The left-hand side of this
equation collects all the dissipation energy that involves the un-identified damping coefficients. In contrast, the
right-hand side of Eq. (9) consists of the ‘‘known’’ information obtained from the input, elastic, kinetic and
dissipated energy involving some ‘‘known’’ damping coefficients. Thus, unknown damping coefficients, c�;F�k,
can be extracted using the measured input and output of the system.

Eq. (9) can also be organized in a matrix form, yielding

A P ¼ U , (13)

where A is a matrix for which each row is composed of known quantities tij or gij. On the other hand, P

indicates a column vector consists of the unknown damping parameters. Finally, U is a column vector
carrying the known information obtained from the input, elastic and kinetic energy of the system. In many
circumstances, especially the experimental ones, the least-squares criterion can be applied to improve the
robustness of the identification method. To do so, more excitations are adopted to generate more
identification equations than the number of unknown parameters. Then, the optimal solution for vector P, in
the least-squares sense, becomes

P ¼ ðATAÞ�1AT U . (14)

Eq. (14) provides an optimal estimate of the unknown parameters, along with a residual r ¼ A P�U which
is generally non-zero. The residual can serve as an indicator of the quality of the damping model. In this study,
it tells whether ‘‘viscous plus Coulomb’’ model can adequately describe friction behaviors occurring at
different contact interfaces. Details of implementing the energy-dissipation identification method augmented
with the least-squares criterion will be elaborated in the numerical and experimental verifications.

It should also be emphasized that the algorithms presented in Eqs. (9)–(12) are only suitable for the case
where both input and response are periodic data. When a(t) is non-periodic, the interval of integration can be
of arbitrary length, whereas the contributions of conservative terms do not vanish after integration. As a
result, the expression of Eq. (12) changes to

bi ¼

Z tþT

t

aiðtÞ _xi dt�

Z tþT

t

mi €xi _xi dt�

Z tþT

t

Xn

j¼1

kijxj

 !
_xi dt�

Z tþT

t

eið _xÞ _xi dt; i ¼ 1; 2; . . . ; n. (12a)

Here, the integrating interval, T, is an arbitrary time interval rather than the fundamental period of a(t) and
x(t). Eqs. (9)–(11) and (12a) can be adopted to estimate damping parameters in a general-input problem.

Furthermore, in order to measure ‘‘the goodness of fit’’ between the estimated system response (the response
obtained from numerical simulation using the identified damping coefficients) and the simulated or
experimental one, a normalized mean square error (MSE) of ‘‘acceleration’’ (used in the numerical studies) or
‘‘velocity’’ (used in the experimental case) signal is adopted. The same indicator was also chosen in Ref. [11].



ARTICLE IN PRESS
J.-W. Liang / Journal of Sound and Vibration 307 (2007) 349–364354
Taking acceleration signal as an example, the MSE percentage can be defined as

MSEi ¼
f
PNp

j¼1ð €xij � ~€xijÞ
2
g

Nps2€xi

" #
� 100; i ¼ 1; 2; . . . ; n, (15)

where €x is the simulated or measured acceleration, while ~€x is the estimated one. Meanwhile, Np is the number
of data points, and s2€x indicates the variance of the simulated or measured acceleration.
3. Application of the method to simulation data

A numerical system with known parameter values is selected to validate the proposed schemes. Both
the periodic- and general-input cases are considered. In implementing the method, the differential
equations of motion are first formulated in a matrix form similar to Eq. (5). Then, a stiff, low-order ordinary
differential equation (ODE) solver of Bogacki and Shampire (ode23tb) is adopted to integrate the ODEs
of the numerical systems at a constant sampling rate, after converting the ODEs to first-order form [15].
Depending on the type of excitation, Simpson’s rule is adopted to obtain tij, gij, and bi in accordance with
the contexts shown in Eqs. (10)–(12) or (10), (11) and (12a). Then, in order to examine the method’s
sensitivity to noisy measurement, white random noise is added to the simulated data. The equivalent
damping estimates obtained from the noise-contaminated data are compared to those obtained from the
noise-free case.

Fig. 1 shows the schematic of the 3-dof vibration system to be numerically studied. The same system has
been studied in Ref. [11]. According to Fig. 1, the following equations of motion can be obtained:

m1 0 0

0 m2 0

0 0 m3

2
664

3
775

€x1

€x2

€x3

8>><
>>:

9>>=
>>;þ

ðc�11 þ c�12Þ �c�12 0

�c�12 ðc�12 þ c�23Þ �c�23

0 �c�23 ðc�23 þ c�33Þ

2
664

3
775

_x1

_x2

_x3

8>><
>>:

9>>=
>>;
Fig. 1. Three-dof system with friction link between mass 3 and ground.
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þ

ðk11 þ k12Þ �k12 0

�k12 ðk12 þ k23Þ �k23

0 �k23 ðk23 þ k33Þ

2
664

3
775

x1

x2

x3

8>><
>>:

9>>=
>>;þ

0

0

sgnð _x3Þ

8>><
>>:

9>>=
>>;F�k ¼

f ðtÞ

0

0

8>><
>>:

9>>=
>>;. ð16Þ

It can be seen in Eq. (16) that there are four viscous-damping parameters, namely c�11; c�12; c�23 and c�33, and
one Coulomb parameter, F�k, to be estimated. From the context of Eq. (5), Eq. (16) can be converted into

m1 0 0

0 m2 0

0 0 m3

2
664

3
775

€x1

€x2

€x3

8>><
>>:

9>>=
>>;þ

ðk11 þ k12Þ �k12 0

�k12 ðk12 þ k23Þ �k23

0 �k23 ðk23 þ k33Þ

2
664

3
775

x1

x2

x3

8>><
>>:

9>>=
>>;

þ

_x1 _x1 � _x2 0 0

0 _x2 � _x1 _x2 � _x3 0

0 0 _x3 � _x2 _x3

2
664

3
775

c�11

c�12

c�23

c�33

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
þ

0

0

sgnð _x3Þ

8>><
>>:

9>>=
>>;F�k ¼

F 0 cos ot

0

0

8>><
>>:

9>>=
>>;. ð17Þ

According to Eq. (17), a periodic excitation, f(t) ¼ F0cosot, is assumed to excite the system at coordinate 1.
Thus, the identification equations can be determined using Eq. (17) and the contexts of Eqs. (9)–(12), yielding

t11c�11 þ t12c�12 ¼ b1, (18)

t22c�12 þ t23c�23 ¼ b2, (19)

t33c�23 þ t34c�33 þ g31F�k ¼ b3, (20)

where

t11 ¼
Z tþT

t

_x2
1 dt; t12 ¼

Z tþT

t

_x1ð _x1 � _x2Þdt; b1 ¼
Z tþT

t

_x1ðFo cos otþ k12x2Þdt, (21)

t22 ¼
Z tþT

t

_x2ð _x2 � _x1Þdt; t23 ¼
Z tþT

t

_x2ð _x2 � _x3Þdt; b2 ¼
Z tþT

t

_x2ðk12x1 þ k23x3Þdt, (22)

t33 ¼
Z tþT

t

_x3ð _x3 � _x2Þdt; t34 ¼
Z tþT

t

_x2
3 dt; g31 ¼

Z tþT

t

_x3sgnð _x3Þdt; b3 ¼
Z tþT

t

_x3ðk23x2Þdt. (23)

Note that when the general input is considered, all bi; i ¼ 1; 2; 3 presented above should be changed based
on the contexts of Eq. (12a). Note that each of the differential equations appearing in Eq. (16) is of second
order. Theoretically, each of these equations can be used to solve for two unknown parameters provided
persistent excitation conditions are satisfied [16]. Hence, the maximal number of unknowns that can be
estimated in this example is six. Here, the system has only five unknowns. As such, one can choose to excite the
system with two different amplitudes, while all three differential equations of (16) are adopted. Alternatively,
one can choose to use all three ODEs of Eq. (16) with more than two excitation levels, so that excessively
more algebraic equations than the number of unknowns are obtained. In that case, more robust estimations
can be gained through the application of the least-squares criterion. Based on the contexts of Eq. (13) and
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Eqs. (18)–(23), one ends up with A P ¼ U , where

A ¼

t111 t112 0 0 0

0 t122 t123 0 0

0 0 t133 t134 g131

..

. ..
. ..

. ..
. ..

.

tk
11 tk

12 0 0 0

0 tk
22 tk

23 0 0

0 0 tk
33 tk

34 gk
31

..

. ..
. ..

. ..
. ..

.

tl
11 tl

12 0 0 0

0 tl
22 tl

23 0 0

0 0 tl
33 tl

34 gl
12

2
6666666666666666666666664

3
7777777777777777777777775
3l�5

; P ¼

c�11

c�12

c�23

c�33

F�k

2
6666664

3
7777775
; U ¼

b11
b12
bl
3

..

.

bk
1

bk
2

bk
3

..

.

bl
1

bl
2

bl
3

2
66666666666666666666666664

3
77777777777777777777777775
3l�1

.

Here, the superscript ‘‘k’’ denotes an arbitrary excitation level, whereas ‘‘l’’ indicates the total number of
excitation levels applied. The optimal solution based on the least-squares criterion can be written as
P ¼ ðATAÞ�1AT U . This approach will be adopted in the numerical and experimental investigations described
in the following sections.
3.1. Numerical study of the 3-dof system: the periodic-excitation case

Numerical simulations are performed with respect to the system shown in Fig. 1 using the following
parameters: m1 ¼ 1.5 kg, m2 ¼ 1.3 kg, m3 ¼ 2.0 kg, k11 ¼ k12 ¼ k23 ¼ k33 ¼ 1� 104 N=m, c�11 ¼ c�12 ¼ c�23 ¼

c�33 ¼ 20N s=m, and F�k ¼ 1:0N. In periodic validation, four cases are studied which correspond to different
excitation and data-processing conditions, as elaborated in Table 1. In Case 1, two sinusoidal inputs of
different frequencies (o ¼ 2p� 5 and 2p� 10) and amplitudes (F0 ¼ 80 and 200) are adopted. Case 1 is also
denoted as the noise-free, mixed-frequency harmonic excitation case. In contrast, in Case 2 (also denoted as
the noise-free, single-frequency harmonic excitation case) two single-frequency (o ¼ 2p� 10) sinusoidals of
different amplitudes, F0 ¼ 80 and 200, are selected. Next, the mixed-frequency excitations are adopted again
in Case 3. However, this time the system’s input and responses are superimposed by a white random noise of
5% of their individual root-mean-squares values. The integration interval, T, used in Cases 1–3 are all equal to
0.2 s which is the fundamental period of 5 and 10Hz periodical signals. Then, in order to understand whether
the length of the integration interval will affect the estimation accuracy, the integration interval, T, is increased
from 0.2 to 2 s in Case 4. Case 4 is not only characterized by the much longer integration interval, its data are
also contaminated in the same way as that in Case 3.
Table 1

The excitation and noise conditions of the sinusoidal-input cases

Excitation and noise conditions

Case 1 The mixed-frequency input, excitation 1: Fo ¼ 80, o ¼ 2p� 5; excitation 2: Fo ¼ 200, o ¼ 2p� 10; noise-free data were

integrated over 0.2 s

Case 2 The single-frequency input, excitation 1: Fo ¼ 80, o ¼ 2p� 10; excitation 2: Fo ¼ 200, o ¼ 2p� 10; noise-free data were

integrated over 0.2 s

Case 3 The mixed-frequency input, excitation 1: Fo ¼ 80, o ¼ 2p� 5; excitation 2: Fo ¼ 200, o ¼ 2p� 10; data contaminated with

5% noise were integrated over 0.2 s

Case 4 The mixed-frequency input, excitation 1: Fo ¼ 80, o ¼ 2p� 5; excitation 2: Fo ¼ 200, o ¼ 2p� 10; data contaminated with

5% noise were integrated over 2 s
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Table 2

The optimal estimates, MSE indicators (all based on Fo ¼ 100, o ¼ 2p� 10) and residuals obtained in simulation Case 1–4

Case 1 Case 2 Case 3 Case 4

~c�11 20.04 MSE1 0.0012% ~c�11 19.26 MSE1 0.0038% ~c�11 19.70 MSE1 0.029% ~c�11 19.60 MSE1 0.0016%

~c�12 20.05 MSE2 0.0013% ~c�12 18.16 MSE2 0.0014% ~c�12 17.25 MSE2 0.032% ~c�12 19.32 MSE2 0.0023%

~c�23 20.19 MSE3 0.0013% ~c�23 23.41 MSE3 0.0029% ~c�23 18.45 MSE3 0.035% ~c�23 20.30 MSE3 0.0021%

~c�33 20.09 r 7.94e�4 ~c�33 20.80 r 9.49e�5 ~c�33 20.08 r 3.57e�2 ~c�33 20.18 r 6.98e�3

~F
�

k
1.01 ~F

�

k
1.01 ~F

�

k
0.85 ~F

�

k
1.02
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Optimal estimates based on the least-squares criterion are sought in the numerical investigations. According
to each set of optimal estimates, ~c�11; ~c

�
12; ~c

�
23; ~c

�
33 and ~F

�

k, a residual, r, is computed. The value of r indicates
whether the Coulomb and viscous model can adequately describe the friction behaviors of the system. In
addition, numerical simulations, corresponding to these optimal parameters together with the excitation
condition:Fo ¼ 100; o ¼ 2p� 10 are conducted to obtain the ‘‘estimated’’ acceleration responses. These
‘‘estimated’’ responses are then compared to the ‘‘simulated’’ ones obtained using the given parameters. The
MSE indicators are computed accordingly. The MSE indicators quantify the closeness between the estimated
and simulated acceleration responses.

The damping estimates are listed in Table 2. Obviously, for the noise-free cases, i.e. Cases 1 and 2, the
viscous-damping estimates obtained from the mixed-frequency case are better than that of the single-
frequency case while the Coulomb ones are the same. Our speculations for the difference between the viscous
estimates are that forcing system with more than one frequency (both near the resonant frequencies, which are
approximately equal to 13, 14.3 and 16Hz, respectively) will excite richer responses of the system. Thus, more
information regarding the viscous damping is provided in these responses, which in turn lead to better viscous
estimations. Other possible explanation includes that using two levels of excitation with the same frequency
theoretically will lead to linear relationships between velocities and therefore between the viscous terms of the
equations obtained from the two tests. To that end, the resultant equations are less independent than those
obtained from the mixed-frequency case. The latter speculation somewhat explains why the Coulomb
estimates is not so sensitive (compared to the viscous case) to different excitation conditions. Moreover,
because the 3-dof vibration system may have very complicated responses, other mechanism could exist. For
instance, our experiences on numerical study show that the phase relationship between the system states
appearing in the definite integrals of Eqs. (21)–(23) also accounts. More specifically, if the phase relationship
between the system states of the monotonically non-decreasing integrals (which can be found among Eqs.
(21)–(23)) results in larger values, more accurate estimates can be obtained.

Next, the MSE values associated with accelerations €x1; €x2; €x3 are computed according to the context of
Eq. (15) together with the simulated and estimated data. The MSE values of Cases 1 and 2 are very small. This
occurs because the MSE value is not only proportional to the errors between the simulated and estimated
acceleration but also inversely proportional to the variance of the simulated acceleration data. The former is
small while the latter is large in Cases 1 and 2. The residuals associated with these two cases are 7.94e�4 and
9.49e�5, respectively. These values are also very small.

Unlike Cases 1 and 2, the input and response signals of Case 3 are contaminated by random noise. Fig. 2
presents the features of the contaminated data in which F0 ¼ 80 and o ¼ 2p� 5. Based on the contaminated
data, the optimal estimates of Case 3 are obtained and included in Table 2. Because the forcing conditions of
Case 3 are the same as those of Case 1, the results obtained in the former should be compared to the latter to find
the effects of random noise on estimation accuracy. From these results, one finds that both the viscous and
Coulomb estimates deteriorate due to the presence of random noise. In fact, the largest error of viscous estimate
increases from 1% to 13.75% while the error of Coulomb estimate increases from 1% to 15%. Next, two
simulations corresponding to the given and estimated parameters, respectively, are conducted and presented in
Fig. 3. Since no random noise has been added to these acceleration data, substantially cleaner features as
compared to Fig. 2 appear in Fig. 3. In addition, relative difference between the estimated and simulated
acceleration pairs are also shown in Fig. 3. It can be observed from Fig. 3 that even though the damping estimates
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Fig. 2. The noise-contaminated signals obtained by adding a white random noise to the simulated data (Fo ¼ 80.0).

Fig. 3. Comparison between the estimated (dotted line) and the simulated (solid line) acceleration responses of Case 3, the relative

difference between the estimated and simulated acceleration are shown in dashed line.

J.-W. Liang / Journal of Sound and Vibration 307 (2007) 349–364358
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obtained from Case 3 seem to be less accurate, the agreements between the simulated and estimated responses are
visually quite acceptable. This can be further confirmed by the small magnitudes of the relative differences.
Nonetheless, the MSE values and the residual of Case 3 are evidently worse than those of Cases 1 and 2.

Finally, the length of integration interval is increased from 0.2 to 2 s in Case 4. Because the data in Case 4
are contaminated in the same way as that in Case 3, the identification results of both cases should be compared
to each other. Based on the optimal estimates of Cases 3 and 4, one finds that increasing the integration period
can dramatically improve the estimation accuracy. The improvements include that for example, the estimation
error of F�k reduces from 15% to 2% while the largest estimation error of viscous damping reduces from
13.75% to 3.4%. The improvements take place in both viscous and Coulomb estimates, and consequently the
MSE indicators and the residual. The results are encouraging, considering that the estimates in Case 3 are not
so satisfactory. Our explanation for such an improvement is that increasing the integration interval would also
increase the resultant values obtained from some of the monotonically non-decreasing integrals presented in
Eqs. (21)–(23). On the other hand, the random noise superimposed in the signal is filtered out through the
application of integration. Since the significant information required in extracting damping parameters is
accumulated while the effects of noise are filtered out, the improvements of the estimates can be predicted. To
summarize, through numerical investigations, one finds that the mixed-frequency sinusoidal excitation
provides better estimates than the single-frequency one when the periodic excitations are of concern.
Moreover, when noisy data are met, increasing the integration interval can be a remedy for the effects of noise.
3.2. Numerical study of the 3-dof system: non-periodic excitation case

A couple of changes have to be made before the identification of non-periodic data can be performed. These
changes include: (1) the energy contribution of the conservative components will be considered and (2) the
integration interval can be of arbitrary length instead of a complete forcing period. In performing numerical
experiments on the general-input case, the system is assumed to be excited at coordinate 1 with two band-
limited (in the frequency range 5–50Hz) white noise signals with zero mean and of rms levels 10 and 40,
respectively. Two cases are investigated in the general-input validations. The first case deals with the noise-free
data and is denoted as Case 5, whereas the second case, also denoted as Case 6, deals with the contaminated
data. Details of the data-processing and excitation conditions of these cases are listed in Table 3. For
comparison reason, the parameter values are kept the same as those in the periodic-input case.

The identification procedures are basically the same as those used in the periodic cases. To this end, the
optimal damping estimates Cases 5 and 6 are obtained and presented in Table 4. According to Table 4, one
Table 3

The excitation and noise conditions of the general-input cases

Excitation and noise conditions

Case 5 Band-limited (5–50Hz) white noise with zero mean, excitation 1: rms level ¼ 10; excitation 2: rms level ¼ 40; noise-free

data were integrated over 2 s

Case 6 Band-limited (5–50Hz) white noise with zero mean, excitation 1: rms level ¼ 10; excitation 2: rms level ¼ 40; data

contaminated with 5% noise were integrated over 2 s

Table 4

The optimal estimates, MSE indicators (based on input with rms level ¼ 40) and residuals obtained in simulation Case 5 and 6

Case 5 Case 6

~c�11 20.0002 MSE1 0.029% ~c�11 19.9986 MSE1 0.037%

~c�12 20.0010 MSE2 0.047% ~c�12 20.0010 MSE2 0.074%

~c�23 19.9990 MSE3 0.091% ~c�23 19.9990 MSE3 0.107%

~c�33 20.0036 r 9.37e�6 ~c�33 20.0004 r 2.32e�6

~F
�

k
0.999995 ~F

�

k
0.99995
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can see that the results of Case 5 are extremely accurate. In fact, these estimate are even better than those of
Case 1 considering that both cases are associated with perfect models and clean data. The highly accurate
estimates obtained for Case 5 may be reasonable because the random input has a relatively broadband
spectrum. Richer response can thus be acquired. These responses in turn provide more information from
which more accurate damping parameters are extracted. Note that even though the optimal estimates obtained
in Case 5 are extremely accurate, the associated MSE values are an order larger than those of Cases 1 and 2.
This happens because the variance of the simulated acceleration in this case is about 100 times smaller than
that of Cases 1 and 2. The residual associated with Case 5 is approximately as small as those of Cases 1 and 2.

Similar to the periodic case, in Case 6, we add to the simulated input, velocity and displacement responses a
white random noise of 5% of their individual root-mean-squares values. The resultant estimates extracted
from the contaminated data are also listed in Table 4. It can be seen that not only the damping estimates but
also the MSE indicators and the residual of this case are all as accurate as those of Case 5. This indicates that
the band-limited random input is almost free from the effects of the added white noise.

Intuitively, it seems that the random-input approach is preferable to the periodic one if only the estimation
accuracy is of concern. However, more measurements including acceleration data are required in order to
implement the non-periodic identification. This can be a drawback, especially when acceleration data are
difficult to obtain. In the next section, experimental validations are conducted on an electrical multi-dof
system. The reason for choosing electrical over mechanical system is that the former one is easier to be
realized. However, this does not imply that the energy-dissipation method is easier to be implemented in the
electrical system too. Because the velocity and acceleration signals are difficult to directly measure in electrical
system, digital differentiation is inevitable. The latter is challenging especially when experimental identification
task is involved.

4. Experimental validations

It is true that if the tests on a mechanical system, such as the 3-dof system studied in the numerical
simulations, are available, they can provide stronger validation of the method. But, on the other hand, if the
previous 3-dof data is not available, then it becomes difficult to make this substitution. To this end, the
experimental investigations are conducted on a two-loop electrical network consisting of two resistor–
inductor–capacitor (RLC) series circuits. The author would like to point out that the electrical circuit applied
in the study is not simply another simulation, since their corresponding accuracies are different. As a matter of
fact, the resister and capacitor adopted in this study individually have a 5–10% uncertainty of their rated
resistance and capacitance values. The reported resistance and capacitance values obtained by careful
measurements are also slightly temperature and frequency dependent. Thus, uncertainty of parameters exists
in the experimental system.

Fig. 4 shows the schematic diagram of the experimental system where v(t) represents the voltage input while
vc1(t) and vc2(t) denote the voltage output corresponding to capacitors C1 and C2, respectively. By using mesh
or nodal analysis, the differential equations, which relate the voltage input to the voltage output, can be
Fig. 4. Schematic diagram of the experimental system.
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formulated as

L1C1
d2vc1ðtÞ

dt2
þ R1C1

dvc1ðtÞ

dt
þ vc1ðtÞ �

C2

C1
vc2ðtÞ ¼ vðtÞ, (25)

L2C2
d2vc2ðtÞ

dt2
þ R2C2

dvc2ðtÞ

dt
þ vc2ðtÞ þ

C2

C1
vc2ðtÞ � vc1ðtÞ ¼ 0, (26)

where R1(R2), L1(L2), and C1(C2) denote the resistance, inductance and capacitance of loops 1 and 2. In order
to apply the proposed identification algorithms to the electrical system, direct equivalences (which might be
different from the traditional ones as seen in Ref. [17]) between the electrical and mechanical systems are
adopted. To that end, products LiCi and RiCi are equivalent to the mass and viscous-damping components of
a 2-dof mechanical system, respectively, whereas the output voltage, vc1(t) and vc2(t), are equivalent to the
displacement responses of the same mechanical system. In accordance with these direct equivalences, the
proposed algorithms presented in Eqs. (9)–(12), or (9)–(11) and (12a) can be adopted to identify the RiCi

values.
Additionally, according to the numerical studies performed in the previous section, one realizes that in order

to gain rich response and hence better estimates from the system, random excitation will be a better choice
compared to the mixed-frequency harmonic one. Therefore, band-pass limited white noise excitations are
chosen as voltage input to the double RLC circuits, leading to the following identification equations:

t11 ~C
�

1 ¼ b1, (27)

t22 ~C
�

2 ¼ b2, (28)

where

t11 ¼
Z tþT

t

_v2c1ðtÞdt; b1 ¼
Z tþT

t

vðtÞ � L1C1 €vc1ðtÞ � vc1ðtÞ þ
C2

C1
vc2ðtÞ

� �
_vc1ðtÞdt, (29)

t22 ¼
Z tþT

t

_v2c2ðtÞdt; b2 ¼
Z tþT

t

vc1ðtÞ � L2C2 €vc2ðtÞ � ð1þ
C2

C1
Þvc2ðtÞ

� �
_vc2ðtÞdt. (30)

Here, the integration interval, T, can be of an arbitrary length. ~C
�

1 and
~C
�

2 denote the estimates of the
electrical parameters R1C1 and R2C2. To avoid confusion, these unidentified parameters will be designated as
the ‘‘electrical-viscous parameters’’ and denoted as C�1 and C�2 hereafter.

Next, experimental tests are conducted on the double-RLC series circuit in which aluminum electrolytic
capacitor, powder-core inductors and carbon resistors are adopted. By careful measurement, the following
values are obtained: R1 ¼ 163O, R1 ¼ 162O, L1 ¼ L2 ¼ 0.1H, C1 ¼ 960 mF, C2 ¼ 956 mF. Therefore, the
reference values of the un-identified ‘‘target’’ parameters are: R1C1 ¼ 0:157 and R2C2 ¼ 0:155. Note that the
resistor and capacitor adopted in this study individually have 5–10% uncertainty of their rated resistance and
capacitance values. Moreover, the ‘‘measured’’ resistance and capacitance values shown above are also
subjected to temperature and frequency dependence. Therefore, parameter uncertainties do exist in the
experimental system.

An arbitrary function generator (Tektronix, TDS3012) is used to excite the electrical system. The function
generator is driven by a personal computer through a GPIB-USB interface. A set of random data (generated
using the ‘‘randn’’ command of the MATLAB commercial software) is sent to the function generator using the
GPIB-USB interface. The random signal is band-pass limited in the frequency range of 1–6Hz. The low
frequency content of the input is intended to excite larger responses from the electrical system. Due to the high
damping ratio, the electrical system will not resonate. Therefore, the largest output of the system occurs near
DC. Fig. 5 shows features of the typical, post-filtering, voltage input and output of the system.

Because there is noise of small amplitudes superimposed on all of the voltage measurements, a fourth-order
low-pass digital filter (elliptic type, realized using MATLAB commercial software) with a cut-off frequency
equal to 10Hz is used. The same filter can also be used to eliminate the 60-Hz power line noise. Additionally,
since only voltage outputs, vc1(t) and vc2(t), are measured, other signals such as _vc1ðtÞ; _vc2ðtÞ; €vc1ðtÞ and €vc2ðtÞ are
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Fig. 5. A typical plot showing the random input and responses of the electrical RLC series circuits.

Table 5

The estimates obtained from voltage measurements of the electrical system

Test ~C
�

1
~C
�

2
MSE1 (%) MSE2 (%)

1 0.151 0.147 4.78 1.70

2 0.154 0.147 4.94 1.93

3 0.154 0.146 4.69 1.93

4 0.153 0.151 4.62 2.23

5 0.152 0.140 5.09 1.55
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obtained by digital differentiations. Serious fluctuations are introduced by these digital differentiations.
Fortunately, the same low-pass filter can also overcome the noise problem introduced by the numerical
differentiations. Finally, to avoid the effects of the ‘‘phase’’ distortions caused by the filtering, which may in
turn affect the estimation results, all the signals used in the identification process are low-pass filtered using the
same filter.

According to the contexts of Eqs. (27) and (28), a single test will be sufficient to gain quick estimates of the
electrical-viscous parameters, C�1 and C�2, five tests are indeed adopted. Thus, the least-squares criterion can be
applied. Table 5 lists the estimates obtained from the five tests using solely Eqs. (27) and (28). Meanwhile, the
least-squares estimates resulted from the same five tests are: ~C

�

1LS ¼ 0:153 and ~C
�

2LS ¼ 0:147. The associated
residual is 0.0110. Compared to the reference values, which are 0.157 and 0.155, respectively, one can see that
the proposed method can accurately identify the electrical-viscous parameters. Based on the least-squares
estimates the estimation errors are all below 6%. The accuracies are quite acceptable considering the facts that
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Fig. 6. A comparison plot shows the simulated (dotted line) and measured (solid line) random responses of the experimental system.
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digital differentiation and low-pass filtering operations are both involved. These operations can more-or-less
affect the identification results although cautions have been taken. Furthermore, the low residual indicates
that the viscous-damping model can approximately describe the system behaviors.

Similar to the numerical case, the ‘‘estimated’’ parameters and the band-limited random input are used to
simulate the first derivatives of the voltage output, i.e. _vc1ðtÞ and _vc2ðtÞ. These results are presented in Fig. 6 and
denoted as the ‘‘estimated’’ signal. The estimated signal are compared to the ‘‘measured’’ signal which are
obtained by differentiating the measured voltage, vc1ðtÞ and vc2ðtÞ. In addition, relative differences between the
measured and simulated data pairs are also demonstrated in Fig. 6. The results presented in Fig. 6 correspond
to test 5 of Table 5. It can be observed from Fig. 6 that the estimated signal (dotted line) is close to the
measured one (solid line). In fact, the MSE values based on these plots are MSE1 ¼ 5.09% and
MSE2 ¼ 1.55%. These low MSE values (together with other four pairs of MSE values listed in Table 5)
confirm the reliability of the proposed method in estimating equivalent damping parameters from the real
system.

5. Conclusion

In this paper, the energy-dissipation method is extended to identify damping parameters from multi-dof
vibration systems. To derive the identification algorithms, the input energy is balanced against the energy
dissipated by a theoretical model, consisting of viscous and Coulomb friction. Through numerical
investigations, the method has been shown to be effective and reliable in estimating equivalent damping
parameters for multi-dof vibration systems no matter whether the data are noise-free or contaminated.

According to the numerical studies performed on periodic excitation, the mixed-frequency harmonic
excitation is preferable to the single-frequency one. Moreover, when noise is present in the measurements,
increasing the length of integration interval can be a remedy for effects of noise on estimation accuracy.
Observations made on numerical study also indicate that the periodic excitation may not be the best choice. In
fact, estimation results obtained from the band-limited white-noise input are more accurate than those
obtained from the periodic one. Such excitations are therefore adopted in the experimental study in which an
electrical system is investigated. The experimental results illustrate the reliability and applicability of the
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proposed method in handling the real situations. The robustness of the method is specially tested during the
experimental studies because digital differentiation and low-pass filtering are both involved.
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